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A B S T R A C T   

In light of the extensive contamination of water sources by microplastics, their substantial specific surface area 
makes them favorable candidates as adsorbents for the simultaneous removal of coexisting contaminants in 
wastewater. In this regard, polyethylene microplastics were utilized to eliminate methylene blue dye from water. 
MB adsorption onto microplastics reached equilibrium in just 30 min at pH 7. The better fit of fractional power 
and Redlich-Peterson models on kinetic and equilibrium adsorption data, respectively, revealed that the MB 
removal process is a chemisorption in multilayer adsorption on the heterogeneous surface of the microplastics 
particles. The reusability of the microplastics adsorbent was confirmed based on the promising outcomes 
observed after five cycles. The results of the random forest regression exhibited an R2 of 97.55% for the cor-
relation between the model-computed and measured amounts of MB reduction. The sensitivity analysis illus-
trated that the MB sorption process on microplastics is highly influenced by the initial MB concentration and 
adsorbent mass. These results show that although microplastics may pose potential risks to water environments, 
their adsorption potential can be utilized to simultaneously omit other pollutants from the aqueous solutions.   

1. Introduction 

The global effort to deal with environmental issues and ensure the 
sustainability of the environment around the world has increased daily 
[1–3]. The world is interconnected and integrated by technology, where 
issues in one-part affect other regions. One of these problems is the 
growth of industrial and agricultural activities, which have increased 
the entry of wastewater containing toxic contaminants into the envi-
ronment [4]. The improper treatment of this wastewater leads to 
disastrous environmental consequences and threatens human society’s 
health [5]. The Environmental Protection Agency (EPA) has classified 
dyes as a national secondary drinking water contaminant. Over 100,000 
commercially available dyes are extensively used in various sectors, like 
textiles, pharmaceuticals, cosmetics, plastics, paper, leather, paint in-
dustries, and food processing. After usage, 700,000 tons of dyes are 
produced annually by these industries, of which 12–14 percent are 
discharged into the environment. Colored effluents may degrade soil 
quality, influence plant growth by disrupting photosynthetic action, and 
enhance the toxicity of water bodies [6]. Methylene blue (MB) is a 
stable, cheap, reactive, and highly colored cationic dye with a molecular 

formula of C16H18N3S(Cl) and a molecular weight of 319.85 g/mol, 
usually available as dark green crystals as a dye [7]. 

Physical [8,9], chemical [10], and biological processes [11] can 
reduce problems associated with dye contamination. Adsorption is 
among the most extensively employed techniques for removing dyes, 
especially non-degradable ones [12–16]. Nano and micro-structure ad-
sorbents with high specific surface area and exceptional adsorption 
capability [17–19], in addition to the high efficiency of adsorption 
processes, justify the use of this process from an economic standpoint, as 
it allows for the recovery and reuse of the adsorbent.[20]. 

Microplastics (MP), commonly characterized as plastic waste smaller 
than 5 mm, have been found in various environments, including lakes, 
estuaries, oceans, and even outlying locations like polar regions [21]. 
Given that wastewater treatment plants (WWTPs) are not specially 
prepared for MP disposal, however, MP elimination appears to happen 
with high performance, and millions of MP are discharged from WWTPs 
to the receiving environment in a day [22,23]. These effluents involve 
MP with contaminants like heavy metals, pesticides, antibiotics, poly-
aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and 
bisphenols. Because of their extensive surface area, MPs attract 
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contaminants in the effluent that causes a synergistic toxic impact on 
organisms in the receiving aquatic environment. In addition to the 
studies on microplastic removal from water sources [24,25], many re-
searchers have used this ability to adsorb various coexisting pollutants 
by microplastics from aqueous solution [26–29]. Therefore, micro-
plastics in aquatic environments near pollutant discharge points are 
important adsorbents in removing various contaminants such as arsenic 
[30], cadmium [31], lead [32], tetracycline hydrochloride [33], and MB 
[34]. Zhao et al. [35] reviewed the excellent potential of microplastics in 
sewage treatment. They concluded that, compared to other adsorbents, 
microplastics offer advantages such as high adsorption capacity, 
adsorption efficiency, and reusability in sewage refinement. 

The utilization of polyethylene microplastics as adsorbents for water 
treatment represents a relatively new and emerging field of research. 
Polyethylene microplastics were employed in this research for MB 
removal due to several factors, including their low cost, high surface 
area-to-volume ratio, availability, and capability to be easily modified 
with chemical or physical treatments to enhance their adsorption ca-
pacity. Moreover, polyethylene microplastics are non-toxic and non- 
reactive, making them safe for use in wastewater treatment. Poly-
ethylene microplastics offer the advantage of easy recyclability and 
reusability in adsorption processes, making them an environmentally 
friendly alternative compared to materials that may not be recyclable 
[36–38]. Although microplastics are a concern in terms of environ-
mental pollution, repurposing them as adsorbents provides a promising 
solution for their management and utilization. Overall, the use of 
microplastics as adsorbents for water treatment offers several key ben-
efits, including high adsorption capacity, cost-effectiveness, scalability, 
reusability potential, and the ability to remove persistent organic pol-
lutants. However, it is crucial to implement proper risk assessment, 
management strategies, and regulatory oversight to ensure the safe and 
responsible use of microplastics in water treatment applications 
[39–41]. Alternatively, the efficiency of (MB) removal in water treat-
ment processes can be influenced by the type (low-density polyethylene 
(LDPE) or high-density polyethylene (HDPE)) and size of polyethylene 
microplastics. Additionally, the smaller size of microplastics presents 
difficulties in their separation from treated water. Their diminutive di-
mensions increase the likelihood of bypassing filtration systems, which 
in turn can result in their potential release into the environment, posing 
risks to aquatic organisms 

The parameters affecting the adsorption process in a volumetric 
system are pH, initial concentration of pollutant, contact time, adsor-
bent dose, and temperature, which have complex relations to adsorption 
capacity [42]. The successful development of artificial neural networks 
has enabled the prediction of target pollutants in aqueous media [43]. 
Regrettably, artificial neural networks models are often considered 
black-box methods, meaning their inner workings and rules are not 
easily interpretable. Utilizing these models can be challenging and may 
have a risk of overfitting. The determination of the optimal structure of 
these models typically relies on trial and error, a process that demands 
significant computational time. Moreover, the strong dependence of 
artificial neural networks models on experimental data poses a major 
challenge for these methods. Conversely, achieving reliable modeling of 
the adsorption process necessitates the utilization of appropriate nu-
merical procedures [44]. However, these procedures may encounter 
convergence issues arising from inadequate initialization and the 
non-linearity inherent in the problem being solved. Alternatively, ma-
chine learning algorithm models have been proposed for data correla-
tion in order to address this issue [45,46]. Researchers often choose 
random forest regression as a modeling method for the adsorption 
process due to its capabilities in handling non-linearity, robustness to 
outliers, handling high-dimensional data, feature importance, and 
ensemble learning. These features make random forest regression 
well-suited for capturing complex relationships, addressing data vari-
ability, managing multiple variables, identifying influential factors, and 
improving generalization performance in adsorption modeling studies 

Therefore, because of the vast existence of microplastics in various 
water sources, in this research, we tried to use this threat as an oppor-
tunity to adsorb and remove the MB pollutant from the aqueous solu-
tion. The primary objectives of this study are: (1) to examine the 
polyethylene microplastics as a novel adsorbent to remove methylene 
blue dye from the aqueous solution, (2) to describe step-by-step the 
adsorption process of MB through the MP by utilizing BET, BJH, FT-IR, 
FE-SEM, and EDS, (3) to determine the kinetics, equilibrium isotherms, 
and thermodynamics parameters, and (4) to model the MB adsorption 
capacity by MP affected by operating parameters, including pH, tem-
perature (Temp), contact time (time), pollutant concentration (C0), and 
adsorbent dosage (Cs), by applying random forest regression technique. 

2. Materials and methods 

2.1. Chemicals and instruments 

Analytical grade MB dye, purchased from Sigma Aldrich (Germany), 
was used as the pollutant. The polyethylene microplastic used in the 
study was prepared by the Department of Materials Science and Engi-
neering at Shiraz University. Other chemicals, namely NaOH (99%) and 
HCL (37%), were sourced from Merck, Germany. The Brunnauer- 
Emmett-Teller (BET) technique was utilized to determine the specific 
surface area of the adsorbent, while the Barrett-Joyner-Halenda (BJH) 
method was employed to calculate the pore size. The Fourier transform 
infrared spectrometer (FT-IR) technique was applied to investigate the 
functional groups existing on microplastics. The size and morphology of 
the microplastic surface were determined using a field emission scan-
ning electron microscope (FE-SEM), and the constituent elements of 
microplastic were identified using energy dispersive spectroscopy 
(EDS). 

2.2. Adsorption tests 

Batch experiments were carried out to determine the adsorption 
capacity and reusability of the microplastic adsorbent after desorption of 
methylene blue, as well as the changes in its effectiveness. To investigate 
the adsorption of MB by a microplastic adsorbent under various exper-
imental conditions, MB stock solutions were obtained by dissolving a 
given mass of solute in distilled water, followed by dilution to reach the 
desired concentration. Then, 30 mL of this solution containing specified 
methylene blue pollutant concentration (C0, 1–60 mg/L) was adjusted 
with 0.1 N HCl or NaOH on the desired pH value (2− 10). After adding a 
specific amount of microplastic adsorbent (Ds, 0.1–1 g) to the solution, 
the container was agitated using a rotary orbital shaker SEBD001 
operating at a speed of 120 rpm at room temperature (25 ± 2 ◦C). Once 
the desired contact time (time, 30–480 min) had elapsed, the mixture 
was filtered through Whatman filter paper, and the remaining concen-
tration of MB in the solution was measured using a UV-Vis spectro-
photometer at a wavelength of λmax = 664 nm. Adsorption efficiency (R) 
and adsorption capacity at equilibrium (qe, mg/g) and at any time (qt, 
mg/g) of microplastics for removal of MB were calculated as: 

R =

(
C0 − Ce

C0

)

× 100 (1)  

qe =
(C0 − Ce)V

m
(2)  

qt =
(C0 − Ct)V

m
(3)  

where C0, Ce, and Ct represent the initial MB concentration, MB con-
centration at equilibrium, and MB concentration at any given time (mg/ 
L), while m and V represent the adsorbent mass (g) and the volume of the 
MB solution (L), respectively. 

The kinetic equations were fitted to data from different contact times 
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(30, 60, 120, 240, 360, and 480 min) at the constant adsorbent dose of 
0.1 g, MB initial concentration of 20 mg/L, and solution pH equal 7. The 
isotherm models were fitted to data from varying adsorbent doses (0.1, 
0.3, 0.5, 0.7, and 1 g) at MB initial concentration of 20 mg/L, solution 
pH 7, and contact time of 30 min. Thermodynamic studies were also 
executed by setting the temperature in the incubator at three various 
temperatures (Temp, 40, 50, and 60 ◦C) at MB initial concentration 
20 mg/L, adsorbent dose 0.1 g, time 30 min, and pH 7. 

Following the adsorption process and separation of the adsorbent 
through filter paper, the microplastic adsorbent was agitated in a 30 mL 
solution of 0.1 M hydrochloric acid. The MB concentration in this so-
lution was measured using a spectrophotometer, which indicates the 
quantity of desorbed dye from the adsorbent (qd, mg/g). Then, the 
recovered microplastics were reused to adsorb MB from the aqueous 
solution (qa, mg/g). The reusability experimentations were conducted 
using the same conditions as the adsorption process, which included an 
MB initial concentration of 20 mg/L, 1 g microplastic adsorbent, and a 
contact time of 30 min. The recycling operation was repeated five times 
to assess the efficiency of the microplastic adsorbent after each wash. 
Finally, the percentage of MB dye desorption (%Desorption) for each 
round was calculated as follows: 

%Desorption =
qd

qa
× 100 (4)  

2.2.1. Adsorption kinetics 
The kinetics models were estimated to designate the mechanism and 

rate of the adsorption process. This kinetics relies on the properties of 
the adsorbate, adsorbent, and experimental conditions. Various reaction 
kinetics models, including pseudo-first-order (PFO), pseudo-second- 
order (PSO), Elovic, and fractional power (F-P) equations were 
attempted to assess the reaction rate and mechanism of MB adsorption 
on microplastic surfaces [47,48]. 

The PFO model for the attraction of MB on microplastic was inves-
tigated using the following equation, which assumes that one adsorbate 
molecule is bound to one binding site of the adsorbent in the solid-liquid 
system: 

qt = qe
(
1 − e− K1 t) (5)  

where qe and qt represent the quantity of material adsorbed per unit 
mass of the sorbent at equilibrium and time t (mg/g), respectively, and 
K1 represents the rate constant of PFO’s surface adsorption (1/min). 

According to the pseudo-second-order kinetic model, the rate- 
limiting step is chemical sorption, and it can forecast the behavior of 
adsorption throughout the entire range: 

qt =
K2q2

e t
1 + K2qet

(6)  

where K2 is the pseudo-second-order velocity constant (mg/g min). 
The Elovich kinetic model, which is often applied for systems with 

heterogeneous surfaces and chemical adsorption kinetics, is also based 
on the adsorption capacity of the adsorbent, as noted by Low [49]. 

qt =

(
1
β

)

ln
(

αβ
)

+

(
1
β

)

ln t (7)  

where α and β represent the initial adsorption rate constant (mg/g.min) 
and the desorption constant (g/mg), respectively. 

The fractional power model can also be expressed in a non-linear 
form as follows: 

qt = atb (8)  

where a represents the initial adsorption rate constant (mg/g), and b 
represents the adsorption rate coefficient (1/h). 

2.2.2. Adsorption isotherms 
The quantity of adsorbed molecules as a function of concentration at 

a constant temperature is described by adsorption equilibrium iso-
therms. The equilibrium characteristics of MB removal from aqueous 
solution were evaluated in this study using Langmuir, Freundlich, 
Temkin, and Redlich-Peterson (R-P) isotherm models, as documented by 
Xu et al. [47] and Saruchi [48]. 

The Langmuir model is the most fundamental theory for surface 
adsorption, postulating that adsorption takes place at homogeneous sites 
on the adsorbent in a monolayer. As per the Langmuir model, the 
adsorption site becomes saturated once occupied, making further 
adsorption impossible. Ultimately, the adsorbent surface attains a 
saturation point, which represents the maximum adsorption capacity of 
the surface. 

qe =
bqmCe

1 + bCe
(9)  

where Ce represents the equilibrium concentration of the solution (mg/ 
L), and qe and qm refer to the adsorption capacity in the equilibrium state 
and the maximum adsorption capacity (mg/g), respectively. Addition-
ally, b denotes the Langmuir constant (L/mg), which indicates the ad-
sorbate’s affinity for adsorption on the adsorbent. qm is used to evaluate 
the efficiency of adsorbents so that the qm and b values should be high in 
a suitable adsorbent. Additionally, the RL index can be employed to 
forecast the adsorption process: 

RL =
1

(1 + bC0)
(10) 

This index aids in predicting the adsorption process so that RL>1 is 
an undesirable adsorption process, 0<RL<1 is a favorable adsorption 
process, RL=1 is a linear process, and RL=0 shows an irreversible and 
inefficient process. 

The Freundlich model is an empirical relationship that explores the 
multilayer adsorption process on heterogeneous adsorbent surfaces with 
sites of various affinities: 

qe = KFC1
n
e (11)  

where KF represents adsorption capacity (mg/g)(mg/L)-n and n reflects 
model exponent (-), known as heterogeneity factor and is suggestive of 
the deviation from linearity of adsorption. A value of n equal to 1 in-
dicates that the process is linear, while values greater than 1 suggest a 
physical adsorption process, and ones less than 1 offer a chemical 
adsorption process. 

By examining the impact of adsorbate-adsorbent interactions on the 
exposure of the adsorbent surface, the Temkin isotherm demonstrates a 
linear decrease in the heat of adsorption of complete adsorbate mole-
cules. 

qe =
RT
bT

ln AT Ce (12)  

where AT represents the equilibrium binding constant (L/g), bT is related 
to the heat of adsorption (J/mol), T is the absolute temperature (K), and 
R is the gas constant equals 8.314 J/K.mol. 

The Redlich-Peterson model is used for adsorption within a broad 
concentration range in homogeneous or heterogeneous systems 
depending on the conditions [50]. This isotherm model is characterized 
as follows: 

qe =
aCe

1 + bCn
e

(13)  

where a represents the solutes absorptivity (L/g), b is the Redlich- 
Peterson isotherm constant associated with the adsorption energy (L/ 
mg)n, and n is the power of the Redlich-Peterson equation (0<n<1). 
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2.2.3. Thermodynamic equations 
The adsorption mechanism is investigated by thermodynamic pa-

rameters, including the change in standard enthalpy(ΔH∘), standard 
entropy (ΔS∘), and Gibbs standard free energy (ΔG∘) for the adsorption 
process using Van’t Hoff equations [51]: 

Kd =
qe

Ce
(14)  

Kc = 1000Kd (15)  

ΔG∘ = − RT ln Kc (16)  

ln Kc =
ΔS∘

R
−

ΔH∘

RT
(17)  

where Kd represents the distribution coefficient of adsorbate (L/g), qe 
denotes the quantity of MB adsorption in equilibrium (mg/g), Ce is the 
equilibrium concentration of MB in solution (mg/L), Kc is the ratio of MB 
removed by microplastic (mg/g) to the remained MB in the solution 
(mg/L), R is the global gas constant (8.314 J/K.mol), and T is the so-
lution temperature (K). 

2.3. Modeling the adsorption process 

The robustness of the random forest regression model was estimated 
for the expression of MB removal from an aqueous environment by 
microplastic in batch experiments. Random forest is a classification al-
gorithm that consists of a set of decision trees to minimize the variance 
of the output generated by each tree, leading to enhanced stability and 
precision in classification. Typically, the random forest technique is 
usually created based on two primary concepts: bagging and random 
selection [52]. Random Forest Regression is built upon several as-
sumptions, including independence, linearity, homoscedasticity, 
normality, and multicollinearity. Random Forest assumes that the ob-
servations in the dataset are independent of each other. Random Forest, 
renowned for its capability to handle non-linear relationships, does not 
make the assumption of linearity between the predictors and the 
response variable. Random Forest Regression does not assume homo-
scedasticity, meaning that it does not require the residuals to have 
constant variance across different levels of the predictors. Unlike linear 
regression, Random Forest Regression does not assume that the residuals 
follow a normal distribution. Random Forest is capable of handling 
multicollinearity, which refers to the presence of high correlation be-
tween predictors [53,54]. In random forest regression, the bagging 
bootstrap aggregation approach is applied to produce numerous trees 
without any interactions. Then the model is run parallel and indepen-
dently on each tree and finally the outputs of the trees are aggregated. In 
other words, the random forest combines multiple decision trees to 
determine the final output rather than relying on individual decision 
trees. For the current research, the input data for the random forest 
model were the parameters of pH, reaction time, adsorbent dosage, 
temperature, and initial concentration of MB, while the output was the 
MB adsorption capacity by MP. The model was evaluated using 25 sets of 
experimental data, with 70% of the data used for training and the 
remaining data for validation. 

2.4. Evaluation criteria 

To evaluate and compare these models to choose the best equation 
describing the removal of MB, mathematical error functions such as the 
coefficient of determination (R2), root-mean-square error (RMSE), ab-
solute relative error (ARE), the sum of absolute errors (SAE), the sum of 
squared errors (SSE), Marquardt standard deviation percentage (MPSD), 
and hybrid fractional error function (HYBRID) were determined in SPSS 
(Table 1) [55]. Finally, by using the non-parametric Friedman test, 
which is used to detect the difference between related data, the kinetic 

and isotherm models were ranked, and the best model was selected 
according to the lowest rank. 

3. Results and discussion 

3.1. Adsorbent characteristics 

The FTIR spectrum of microplastic before and after MB adsorption is 
represented in Fig. 1. Before the adsorption of MB, the peak within the 
3500–3400 cm− 1 is related to hydroxyl groups (O-H), which allows the 
formation of hydrogen bonds [56]. The stretching vibration peak in the 
3441 cm− 1 spectra is attributed to the N-H bond in the amine group 
[57]. The 2840–3000 cm− 1 band is associated with C-H aromatic bonds. 
The strong bands in the 1611.34 cm− 1 and 2368.41 cm− 1 are related to 
C––C and O––C=O stretching bonds, respectively [58]. The peak of 
1460.07 cm− 1 is attributed to the C-H bending bond. The 1264.72 cm− 1 

band indicates the existence of a strong C-O stretching bond. Also, the 
spectrum in the range of 54.720–996.07 cm− 1 is allocated to the strong 
C––C bending bond. After MB absorption, the bands of 3441.48, 
2927.25, 2368.41, 1611.34, and 467.36 cm− 1 were transferred to 
2920.30, 2634.83, 2021.33, 1466.42, and 720.49 cm− 1 respectively, 
that the sharp peak at 720.49 cm− 1 is indicative of the strong C––C 
bending bond. The peak in 48.3441 cm− 1 has disappeared, and one in 
the range of 38.2851–30.2920 cm− 1 has been added, related to the C-H 
stretching bond. Also, a peak in 1611.34 cm− 1 has been lost. All these 
changes indicate the adsorption of MB by the microplastic adsorbent, 
which reflects minor changes in the molecular structure. 

SEM images of microplastics shown in Fig. 2 indicate the non-porous 
microplastic structure owning holes, in which the shape of the holes is 
irregular and chaotic, and the shape and size distribution of the holes are 
unknown. Therefore, there is a possibility of adsorbing MB molecules 
between the holes by this adsorbent. 

X-ray energy diffraction spectroscopy of microplastic (Fig. 3) 
revealed that the constituent elements include carbon, oxygen, copper, 
titanium, and calcium, whose weight percentages in the microplastic 
sample were 95.9%, 3.2%, 0.5%, 0.2%, and 0.2%, respectively. 

The determination of the specific surface area of an adsorbent is 
frequently carried out using the BET (Brunauer, Emmett, and Teller) 
method, which is widely accepted as the standard technique. This model 
uses gases, which do not chemically react with the material surface but 
allow the adsorption of gas molecules to the solid surface, which 

Table 1 
Error functions used to compare models.  

Criterion Symbol Formula 

R-squared R2 

R2 =

∑
(qobs − qpre)

2

∑
(qobs − qpre)

2
+
∑

(qobs − qpre)
2 

Root-mean-square error RMSE 
RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(qobs − qpre)
2

n

√

Absolute relative error ARE 
ARE =

100
n

∑n
i=1

⃒
⃒
⃒
⃒
qobs − qpre

qobs

⃒
⃒
⃒
⃒

The sum of absolute errors SAE SAE =
∑n

i=1

⃒
⃒
⃒qobs − qpre

⃒
⃒
⃒
2

i 
The sum of squared error SSE SSE =

∑n
i=1(qobs − qpre)

2
i 

Marquardt’s percentage 
standard deviation 

MPSD 
MPSD =

100

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n − p

∑n
i=1

(
qobs − qpre

qobs

)2
√

HYBRID HYBRID 
HYBRID =

100
n − p

∑n
i=1

⃒
⃒
⃒
⃒
qobs − qpre

qobs

⃒
⃒
⃒
⃒

qobs and qpre are respectively measured and predicted adsorption capacity at 
time t, n denotes the number of observed values, and p represents the number of 
factors. 
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provides an estimation of the pore volume and surface area. The nitro-
gen adsorption-desorption isotherm of microplastic is represented in  
Fig. 4. Based on the IUPAC categorization, microplastic isotherm is 
categorized as type II with hysteresis, which indicates the non-porous 
and macroporous nature of the adsorbent. Also, the BET-specific sur-
face area and mean pore size of microplastic particles are tabulated in  
Table 2. 

3.2. Evaluation of effective adsorption parameters 

3.2.1. pH influence 
The results of the pH effect on the MB removal by the microplastic 

adsorbent in Fig. 5 show that with an increase in pH from 2 to 7, there 
was a corresponding increase in adsorption. However, there was a 
decrease in adsorption from pH 7–8, followed by another rise at pH 10. 
Based on the data, the optimal pH for MB removal using the microplastic 
adsorbent was 7, with an adsorption capacity of 3.9 mg/g and a removal 
efficiency of 65%. The pH of the solution can impact the speciation of 

MB in the solution and the surface charge distribution on MB. As a result, 
the electrostatic interactions between the different species of MB in the 
solution and the surface of the microplastic can be affected, leading to 
attractive or repulsive forces. MB appears under the influence of the 
aqueous solution pH in two cationic species and undissociated molecules 
(Fig. 6). At pH 3, the MB species prevails, accounting for 86% of the total 
species. At the pH equal to the pKa value of 3.8, both MB◦ and MB+

species coexist in equal proportions of 50%. However, at pH greater than 
6, the MB+ species becomes nearly the exclusive form of MB present 
[59]. According to studies conducted by Xu et al. [47] and You et al. 
[34], the zero charge point (pHpzc) of polyethylene is 4.3, which means 
that the surface charge of the polyethylene microplastic is positively 
charged when the pH is lower than 4.3. The reason for the low 
adsorption capacity of the microplastic adsorbent at pH values lower 
than pHpzc is attributed to the electrostatic repulsion between the 
positively charged surface of the microplastic adsorbent and 
electro-positive MB (cationic) in the aqueous solution. Besides, the 
excess H+ ions in the solution compete with the MB+ ions for adsorption 

Fig. 1. FTIR spectrum of microplastic before and after MB adsorption.  

Fig. 2. SEM images of microplastic adsorbent.  
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sites on the microplastic adsorbent, leading to a decrease in adsorption 
under acidic conditions. The interaction between the hydroxyl groups 
on the surface of the polyethylene microplastics and the nitrogen atoms 
of MB leads to the formation of hydrogen bonding, which is the primary 

adsorption mechanism at low pH values. With increasing pH, the surface 
charge of the microplastic adsorbent becomes negative at pH> 4.3. In 
contrast, the dominant species of MB at pH> 3.8 is cationic, which leads 
to an enhancement in the electrostatic attraction between them, and the 
adsorption capacity increases. 

Fig. 3. EDS spectrum of microplastic.  

Fig. 4. Nitrogen adsorption-desorption isotherms of microplastic adsorbent.  

Table 2 
Results of BET analysis performed on microplastic.  

Parameter Value 

Specific surface area (m2/g)  0.6865 
Average volume of cavities (cm3/g)  0.002 
Average hole diameter (nm)  12.228  

Fig. 5. The impact of pH on the removal efficiency and the adsorption capacity 
of MB by the microplastic adsorbent (initial concentration 20 mg/L, adsorbent 
dose 0.1 g, time 30 min, and temperature 25 ◦C). 

Fig. 6. Molecular structure and speciation diagram of the MB [59].  

Fig. 7. The contact time influence on the removal efficiency and the adsorption 
capacity of MB by the microplastic adsorbent (initial concentration 20 mg/L, 
adsorbent dose 0.1 g, pH 7, and temperature 25 ◦C). 
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3.2.2. Contact time influence 
The results of the contact time influence on the MB dye elimination 

by microplastics are shown in Fig. 7. The highest removal of the 
pollutant occurred in the first minutes, which can be ascribed to the 
empty sorption sites at the beginning of the adsorption process [50,51]. 
The optimal contact time for adsorption was determined to be 30 min, 
based on the results that showed a removal efficiency of 43.32% and an 
adsorption capacity of 2.60 mg/g. According to the findings of You et al. 
[34], the amount of MB adsorbed onto the aged polyethylene micro-
plastics increased progressively over time and eventually reached 
equilibrium after 72 hours. 

3.2.3. Initial concentration influence 
According to the findings illustrated in Fig. 8, when the initial con-

centration of MB was increased from 1 to 10 mg/L, the removal effi-
ciency decreased. However, it reached a maximum value of 72.35% 
when the initial concentration was 20 mg/L. On the other hand, the 
adsorption capacity increased with the enhancement in the initial con-
centration of cationic dye. The observed phenomenon can be diagnosed 
as follows: at lower pollutant concentration levels, there are more 
available adsorption sites on the adsorbent surface. As more pollutants 
adsorb onto the surface, available sites become saturated faster, 
decreasing removal efficiency for MB pollutants [8,60]. The increase in 
adsorption capacity observed with the increasing initial concentration of 
MB may be due to the probable interaction between the MB ions and the 
surface of the adsorbent. Hameed et al. [60] stated that a higher initial 
dye concentration results in a higher adsorption capacity due to a more 
significant concentration gradient, which creates a more vital driving 
force for mass transfer. Similar results have been reported by Arshadi 
et al. [8], Amiri et al. [9], and Bahrami et al. [16]. 

3.2.4. Adsorbent dosage influence 
Fig. 9 indicates the results of the adsorbent dosage effect on MB 

removal efficiency and MP adsorption capacity. Enhancement in the 
sorbent dosage from 0.1 to 1 g raised the removal efficiency of MB 
pollutants from 52.29% to 75.23% because of the increment in the 
surface area and the number of available adsorption sites [50]. 
Contrariwise, as the adsorbent dose increased, the adsorption capacity 
decreased due to a reduction in the amount of MB adsorbed per unit 
weight of the adsorbent [44,51,61]. Furthermore, an increase in the 
dosage of the MP creates a more pronounced concentration gradient 
between the MB solution and the surface of the MP. This concentration 
gradient facilitates the movement of MB molecules from the bulk solu-
tion toward the MP surface, thereby enhancing the chances of adsorp-
tion occurrence [44]. 

3.2.5. Temperature influence 
The graph depicted in Fig. 10 illustrates that the maximum removal 

efficiency of MB was achieved at a temperature of 40 ◦C, with a value of 
52.03%. The decrease in adsorption as the temperature of the MB 

solution increased from 40 to 60 ◦C suggests a weak adsorption inter-
action of MB on the adsorbent surface [43]. The reduction in MB 
adsorption in the temperature range of 40–60 ◦C can be attributed to 
several factors, including thermodynamic effects, solubility and diffu-
sion, and changes in microplastic structure [43]. The findings indicate 
that the adsorption of MB by the microplastic adsorbent is an exothermic 
process [62]. At elevated temperatures, the boundary layer thickness 
reduces because MB has a greater tendency to desorb from the adsorbent 
surface and return to the solution phase, and subsequently, the 
adsorption decreases. Elevated temperatures can increase the solubility 
of MB, allowing more dye molecules to remain in the liquid phase 
instead of adsorbing onto microplastic surfaces. Furthermore, elevated 
temperatures can accelerate the diffusion rate of MB molecules, enabling 
them to traverse the solution more swiftly. This heightened diffusion 
rate restricts their interaction with the microplastic surface, which limits 
adsorption. Rising temperatures can cause alterations in the properties 
and structure of polyethylene microplastics. These changes may involve 
the softening or melting of the microplastic material, resulting in altered 
surface characteristics and diminished adsorption capacity. 

3.3. Adsorption kinetics 

Based on the outcomes of the batch adsorption tests, the adsorption 
rates were explored by kinetic studies. Table 3 presents the kinetic 
models’ variables calculated via non-linear regression. Based on the 
coefficient of determination and Friedman’s average rank method, the F- 
P model was the most appropriate kinetic model for characterizing MB 
removal. Next, the PSO model was fitted on experimental data, and the 
calculated value of qe (2.627 mg/g) was in close agreement with the 
experimental qe value of 2.60 mg/g. That is, the multiple interfacial 
interactions, such as hydrophobic partitioning, electrostatic attraction, 

Fig. 8. The initial concentration influence on the removal efficiency and the 
adsorption capacity of MB by the microplastic adsorbent (initial concentrations 
1–60 mg/L, adsorbent dose 0.1 g, time 30 min, pH 7, and temperature 25 ◦C). 

Fig. 9. The adsorbent dosage influence on the removal efficiency and the 
adsorption capacity of MB by the microplastic adsorbent (initial concentration 
20 mg/L, contact time 30 min, pH 7, and temperature 25 ◦C). 

Fig. 10. The influence of temperature on the removal efficiency and the 
adsorption capacity of MB by the microplastic adsorbent (initial concentration 
20 mg/L, adsorbent dose 0.1 g, time 30 min, and pH 7). 
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hydrogen bonding, and van der Waals forces, were closely related to the 
rate-determining step [63] (Zhang et al., 2020). These results are 
expressive of the chemisorption of MB by MP adsorbent. 

The constant values of the Elovich model (α and β) for MB adsorption 
on the microplastic particles express the effect of the adsorbent dose and 
the possibility of carrying out adsorption and desorption cycles. Based 
on the findings of the studies of Awwad et al. [64] and Basu et al. [61], 
these parameters provide an acceptable value in removing MB dye from 
the aqueous solution. Friedman’s rank indicated that despite the po-
tential impact of the Elovich model constants, the model did not fit well 
with the experimental data. 

3.4. Adsorption isotherm 

Table 4 displays the constants for the isotherm models, which were 
determined through non-linear regression. These constants can be used 
to predict adsorption capacities and to incorporate them into mass 
transfer relationships to design adsorption experiments. The high R2 and 
low error values demonstrate the suitability of the R-P model for MB 
adsorption onto MP materials. The successful fitting of the adsorption 
data to the Redlich-Peterson model indicates that the removal of MB 
occurs through multilayer adsorption on the heterogeneous surface of 
the MP adsorbent [65]. SEM observations are also consistent with these 
results. Lin et al. [66] stated that the Redlich-Peterson method results 
from combining the Langmuir and Freundlich isotherm equations, 
which is suitable for porous adsorbents. Based on the average rating of 
Friedman, the Temkin isotherm is ranked second. The high value of the 
bT constant, the relationship between the logarithm of the equilibrium 
concentration and the adsorption rate, indicates that the adsorption has 
been done well. The Langmuir model, which has a Friedman rank of 
three, cannot describe the nature of the adsorption process well. As the 
assumptions of this model are based on the uniform surface of the 
adsorbent, each adsorption site can adsorb only one species. These as-
sumptions are inconsistent with the results and do not conform to SEM 

analysis [67]. As shown in Fig. 11, the dimensionless separation factor 
(RL) values obtained from the Langmuir model are less than 1 (0.0001<
RL<0.011), indicating that the adsorption process is favorable [48]. The 
last simulation model is the Freundlich isotherm model, utilized to 
describe the adsorption on heterogeneous surfaces and accounts for the 
development of multilayer adsorption and interactions between 
adsorbing molecules [68]. As can be seen, the adsorption desirability 
index (n) in the Freundlich model for microplastic adsorbent was more 
than 1, which indicates a favorable physical process. 

3.5. Adsorption thermodynamics 

To gain a better understanding of how increasing temperature im-
pacts the adsorption of MB dye onto MP particles, three fundamental 
thermodynamic parameters were examined: the Gibbs free energy of 
adsorption (ΔG̊), the enthalpy change (ΔH̊), and the entropy change 
(ΔS̊). The obtained values of thermodynamic factors are presented in  
Fig. 12. The fact that the Gibbs free energy values are negative indicates 
that the adsorption of MB on the microplastic material is thermody-
namically favorable and is carried out through a spontaneous process. 
On the other hand, the ΔG̊ value increased as the temperature increased, 
suggesting better adsorption occurs at lower temperatures [68]. The 
negative magnitude of ΔH̊ (-25.05 kJ/mol) confirms that the adsorption 
process is exothermic, consistent with the observed decrease in MB 
uptake by the MP as the temperature increases. Also, based on the 
magnitude of ΔH̊, it appears that the MB dye adsorption by the micro-
plastic adsorbent is a chemical process characterized by strong in-
teractions between the MB particles and the functional groups on the MP 
surface. According to Ozdes et al. [68] and Khormaei et al. [69], the 
enthalpy value provides information about the adsorption type. Typi-
cally, the ΔH̊ value for physical adsorption is less than 4.2 kJ/mol, while 
it is greater than 21 kJ/mol for chemical adsorption. The negative 
magnitude of ΔS̊ (-0.03048 kJ/mol) proposed a declined randomness at 
the solid/solution interface during the adsorption of MB dye on the MP 
surface. A similar trend was observed by Khormaei et al. [69], who 
demonstrated that an increase in temperature from 20 to 50 ◦C resulted 
in a decrease of approximately 20% in copper removal. 

The outcome suggests that the impact of MP on the coexisting species 
in its vicinity may vary depending on the season and location. MP 
adsorption may be more severe in winter and colder regions, but 
negligible in summer and hotter areas. 

3.6. Desorption 

As can be seen in the results of the adsorption-desorption processes in 
five cycles in Fig. 13, the reusability of the adsorbent exhibits promising 
outcomes. Because microplastic could remove MB dye up to five cycles, 
and the change in adsorbability was not so much. Therefore, the 
microplastic can act as a cost-effective and practical adsorbent for 
removing MB pollutants from an aqueous environment. The findings 

Table 3 
The kinetic parameters and error functions obtained for MB dye adsorption by 
microplastic.  

Model PFO PSO Elovich F-P 

qe,exp = 2.60 
Coefficients qe=2.53 qe=2.627 α=50 a=2.861  

k=0.05 k=0.05 β=4.301 b=-0.032 
R2 0.9840 0.9863 0.9808 0.9968 
RMSE 0.31 0.28 0.34 0.14 
SSE 0.57 0.48 0.68 0.11 
SAE 0.57 0.48 0.68 0.11 
ARE 1.50 1.31 1.82 0.31 
HYBRID 1.001 9.89 12.68 4.30 
MPSD 12.26 11.47 13.51 5.61 
Average rating of Friedman 2.71 2.14 4 1.14 
Model rating 3 2 4 1  

Table 4 
Non-linear isotherm parameters and error functions acquired for the adsorption 
of MB dye by microplastics.  

Model Langmuir Freundlich R-P Temkin 

Coefficients b = 87.127 KF = 1.099 a = 2.0 AT = 1.0  
qm =1.205 n = 20 b=18 b T = 157.65 

R2 0.9995 0.9777 0.9527 0.6334 
RMSE 0.9871 0.9764 0.9650 0.8003 
SSE 4.87 4.76 4.65 3.20 
SAE 4.87 4.76 4.65 3.20 
ARE 89.54 87.98 10.03 28.71 
HYBRID 79.422 79.427 19.700 52.360 
MPSD 94.63 93.79 31.67 53.58 
Average rating of 

Friedman 
3.42 1.57 1.71 1.85 

Model rating 3 4 1 2  
Fig. 11. The separation factor of the Langmuir model for various values of 
initial concentration. 
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were consistent with the research performed by Tsade Kara et al. [70] in 
the reuse of modified nano cellulose adsorbent to eliminate MB dye. 
According to You et al. [34], the desorption efficiency of adsorbed MB 
can significantly vary depending on the physiological conditions of the 
organisms in question. They also proposed that the MB adsorbed onto 
MP could potentially be desorbed following ingestion by marine 
organisms. 

3.7. Mechanism studies 

It has been observed that materials with a negatively charged surface 
tend to attract cationic species through electrostatic attraction. How-
ever, the amount of adsorbed cationic species is not always higher than 
that of anionic species, suggesting that other complex interactions may 
also be involved in adsorption [71]. It is worth noting that, according to 
the value of logKow (5.85) of MB and the contact angle (CA) of MP, the 
hydrophobicity of the surface of MP and MB molecules is stronger with a 
larger logKow or CA value [72]. Therefore, hydrophobic partitioning 
plays an essential role in the sorption of MB onto the MP. Additionally, 
the electrostatic attraction between the cationic MB and the negative 
charges on MP and hydrogen bonding also contribute to the capture of 
MB. 

3.8. Random forest regression modeling 

Two indices, namely %IncMSE and IncNodePurity, were utilized to 
determine the relative importance of various parameters and optimize 
the adsorption process. The %IncMSE index measures the increase in 
mean squared error when a particular parameter is randomly permuted. 
A higher %IncMSE value indicates that the permutation of that param-
eter has a more significant impact on the adsorption capacity. By 
analyzing the %IncMSE values for each parameter, it becomes possible 
to identify the most influential factors. The IncNodePurity index eval-
uates the enhancement in node purity when a decision tree is split based 

on a specific parameter. A higher IncNodePurity value indicates a 
greater contribution of the parameter to the overall predictability of the 
model. By scrutinizing the IncNodePurity values, one can ascertain the 
relative importance of each parameter in predicting the adsorption ca-
pacity. Random forest regression (RFR) was employed to simulate the 
non-linear behavior of the adsorption process. The results, depicted in  
Fig. 14 and Table 5, illustrate the modeled adsorption capacity (q) of MP 
for the removal of MB from aqueous solution under the effect of various 
independent variables, including pH, temperature, reaction time, 
adsorbent dosage, and initial concentration of MB. 

The outputs obtained from Random Forest Regression reveal that the 
adsorption capacity of the MP is primarily influenced by the adsorbent 
dose (Cs), followed by C0, pH, time, and temperature. This conclusion is 
drawn based on the percent increase in mean squared error (%IncMSE 
index) as an indicator of variable importance. Additionally, when 
considering the increase in node purity (IncNodePurity index), the pa-
rameters were ranked in the following order of importance for the 
adsorption capacity of MP: C0, Cs, pH, time, and temperature. Based on 
the average rank values of both indices presented in Table 6, C0 and dose 
(Cs) have the highest impact on the adsorption capacity (q). On the other 
hand, pH, time, and temperature have comparatively lower rankings, 
indicating a relatively lesser influence on the adsorption capacity. 
Therefore, according to the RFR technique, the variables C0 and Cs were 
identified as the most influential predictors of the adsorption capacity.  
Fig. 15 confirms this result and reveals that two parameters significantly 
affect the adsorption capacity. The coefficient of determination (R2) for 
the model’s predictability was 97.55%, which indicates a high degree of 
accuracy and reliability of the random forest regression model. To 
obtain a comprehensive understanding of how each parameter collec-
tively influences the adsorption capacity of MP, we considered the 
combined impact of all factors. According to Fig. 16, it can be observed 
that there is a positive correlation between the pH and the adsorption 
capacity of MP. As the pH increases, the adsorption capacity of MP also 
increases. Notably, there is a steep increase in the adsorption capacity at 
pH levels around 4–5, and this upward trend continues up to around pH 
10. Since dye precipitation occurs in alkaline pHs, the optimal pH value 
for maximum adsorption capacity equals 7. 

Adsorption capacity reduction with time is divided into two stages: 
at first, MB is quickly adsorbed on the microplastics within 30 min, and 
then q is decreased sharply up to 120 min. After that, the adsorption 
capacity reduced less intensively with time [44]. An enhancement in the 
initial concentration of MB caused a growth in the adsorption capacity of 
microplastics. One explanation for this phenomenon is that a higher dye 
initial concentration creates a more potent driving force for mass 
transfer, resulting in a higher adsorption capacity [60]. By increasing 
the adsorbent dose, the adsorption capacity of MP declined because of 
the accumulation of adsorbent particles in the solution, which creates 
diffusion and migration barricades that prevent pollutant molecules 
from reaching the adsorbent surface [61,73]. The adsorption capacity of 
MP was found to decrease as the temperature increased, with the highest 
value of q being observed at a temperature below 40 ◦C. In contrast, the 
q falling slope at 50–60 ◦C is greater than that of 40–50 ◦C. 

4. Conclusion 

This study employs a random forest regression model to predict the 
batch adsorption of MB onto polyethylene microplastics. This modeling 
approach provides a novel and potentially more accurate method for 
understanding and predicting the adsorption behavior compared to 
traditional linear models typically used in similar studies. The adsorp-
tion process considered various factors, including pH (2− 10), initial 
concentration of MB (1–60 mg/L), contact time (30–480 min), temper-
ature (40–60 ◦C), and adsorbent dose (0.1–1 g). Batch adsorption studies 
revealed that the optimum removal of MB was achieved at a pH level of 
7. Additionally, it was observed that equilibrium between the adsorbent 
and MB was attained after a contact time of 30 min. The results from the 

Fig. 12. The van’t Hoff graph of ln (KC) vs. 1/T for MB uptake by microplastics.  

Fig. 13. Adsorption- desorption cycles of MB dye by the micro-
plastic adsorbent. 
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kinetic and isotherm studies suggest that the adsorption of MB follows a 
chemisorption mechanism during the multilayer adsorption process on 
the heterogeneous surface of the MP adsorbent. The thermodynamic 
evaluation indicated that the adsorption of MB was a spontaneous and 
exothermic process, with the highest removal of MB occurring at 40 ◦C. 
The adsorption process was found to occur through both chemical and 
physical mechanisms. The reusability of MP was corroborated with 
promising results after five cycles of adsorption-desorption of MB dye. 
SEM characterization analysis showed the non-porous microplastic 
structure owning holes, in which the shape of the holes is irregular and 
chaotic. BET study indicated the non-porous and macroporous nature of 

the MP adsorbent. Also, FTIR minor changes in the molecular structure 
before and after the adsorption tests illustrated that the microplastic 
adsorbent was successful in adsorbing MB. The random forest regression 
was able to model the adsorption process satisfactorily. The sensitivity 
analysis of the model revealed that the adsorption of MB onto the 
microplastic adsorbent is more sensitive to changes in the initial MB 
concentration and the amount of adsorbent used. This modeling 
approach can be valuable in practical applications by providing insights 
into the factors influencing the adsorption process and facilitating 
optimization efforts. The combination of experimental and modeling 
approaches enhances our understanding of the potential use of poly-
ethylene microplastics in water treatment and provides a foundation for 
further research in this area. 
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Fig. 14. Variable significance estimated by RFR.  

Table 5 
Variable significance estimated by RFR.  

parameter %IncMSE IncNodePurity 

pH  13.93  8.59 
time  12.35  2.67 
C0  15.70  27.17 
Cs  22.48  13.43 
Temp  4.15  0.88  

Table 6 
The rank of parameters’ significance on q based on RFR.  

Parameter I1 I2 Mean rank 

C0  2  1  1.5 
Cs  1  2  1.5 
pH  3  3  3 
time  4  4  4 
Temp  5  5  5  

Fig. 15. Number of the most influential variables in predicting q.  
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G. Rangel-Peraza, V. Bustos-Terrones, M.N. Rojas-Valencia, Removal of BB9 textile 

Fig. 16. Performing sensitivity analysis on the effective parameters of adsorption capacity using RFR.  

M. Bahrami et al.                                                                                                                                                                                                                               



Alexandria Engineering Journal 95 (2024) 101–113

112

dye by biological, physical, chemical, and electrochemical treatments, J. Taiwan 
Inst. Chem. Eng. 121 (2021) 29–37, https://doi.org/10.1016/j.jtice.2021.03.041. 

[12] L. Huang, Q. Shuai, S. Hu, Tannin-based magnetic porous organic polymers as 
robust scavengers for methylene blue and lead ions, J. Clean. Prod. 215 (2019) 
280–289, https://doi.org/10.1016/j.jclepro.2019.01.040. 

[13] H. Koyuncu, A.R. Kul, Removal of methylene blue dye from aqueous solution by 
nonliving lichen (Pseudevernia furfuracea (L.) Zopf.), as a novel biosorbent, Appl. 
Water Sci. 10 (2020) 72, https://doi.org/10.1007/s13201-020-1156-9. 

[14] F.M. Mpatani, A.A. Aryee, A.N. Kani, K. Wen, E. Dovi, L. Qu, Z. Li, R. Han, Removal 
of methylene blue from aqueous medium by citrate modified bagasse: kinetic, 
equilibrium and thermodynamic study, Bioresour. Technol. Rep. 11 (2020) 
100463, https://doi.org/10.1016/j.biteb.2020.100463. 

[15] M.J. Amiri, M. Bahrami, M. Badkouby, I.K. Kalavrouziotis, Greywater Treatment 
Using Single and Combined Adsorbents for Landscape Irrigation, Environ. Process. 
6 (1) (2019) 43–63, https://doi.org/10.1007/s40710-019-00362-1. 

[16] M. Bahrami, M.J. Amiri, F. Bagheri, Optimization of the lead removal from 
aqueous solution using two starch based adsorbents: design of experiments using 
response surface methodology (RSM), J. Environ. Chem. Eng. 7 (1) (2019) 102793, 
https://doi.org/10.1016/j.jece.2018.11.038. 

[17] M. Akin, R. Bayat, M. Bekmezci, Z.K. Coguplugil, F. Sen, M. Baghayeri, A. Kaffash, 
F. Tehranejad-Javazmi, I. Sheikhshoaie, The use of polymer/carbon based material 
as an efficient and low-cost electrochemical sensor for rapid electrochemical 
detection of dopamine, Carbon Lett. (2023), https://doi.org/10.1007/s42823-023- 
00537-9. 

[18] A. Amiri, M. Baghayeri, M. Shahabizadeh, Polypyrrole/carbon nanotube coated 
stainless steel mesh as a novel sorbent, N. J. Chem. 47 (2023) 4402–4408, https:// 
doi.org/10.1039/D2NJ04837J. 

[19] W. Sun, Y. Hong, T. Li, H. Chu, J. Liu, L. Feng, M. Baghayeri, Biogenic synthesis of 
reduced graphene oxide decorated with silver nanoparticles (rGO/Ag NPs) using 
table olive (Olea europaea) for efficient and rapid catalytic reduction of organic 
pollutants, Chemosphere 310 (2023) 136759, https://doi.org/10.1016/j. 
chemosphere.2022.136759. 

[20] M. Bahrami, M.J. Amiri, F. Bagheri, Optimization of crystal violet adsorption by 
chemically modified potato starch using response surface methodology, Pollution 6 
(2020) 159–170, https://doi.org/10.22059/poll.2019.288467.674. 

[21] D.K. Kanhai, K. Gardfeldt, O. Lyashevska, M. Hassellov, R.C. Thompson, 
I. O’Connor, Microplastics in sub-surface waters of the Arctic Central Basin, Mar. 
Pollut. Bull. 130 (2018) 8–18, https://doi.org/10.1016/j.marpolbul.2018.03.011. 

[22] A.A. Franco, J.M. Arellano, G. Albendín, R. Rodríguez-Barroso, J.M. Quiroga, M. 
D. Coello, Microplastic pollution in wastewater treatment plants in the city of 
Cádiz: abundance, removal efficiency and presence in receiving water body, Sci. 
Total Environ. 776 (2021) 145795, https://doi.org/10.1016/j. 
scitotenv.2021.145795. 

[23] S. Acarer, Microplastics in wastewater treatment plants: sources, properties, 
removal efficiency, removal mechanisms, and interactions with pollutants, Water 
Sci. Technol. 87 (2023) 685–710, https://doi.org/10.2166/wst.2023.022. 

[24] M.R. Karimi Estahbanati, M. Kiendrebeogo, A. Khosravanipour Mostafazadeh, 
P. Drogui, R.D. Tyagi, Treatment processes for microplastics and nanoplastics in 
waters: state-of-the-art review, Mar. Pollut. Bull. 168 (2021) 112374, https://doi. 
org/10.1016/j.marpolbul.2021.112374. 

[25] H.J. Kwon, H. Hidayaturrahman, S.G. Peera, T.G. Lee, Elimination of microplastics 
at different stages in wastewater treatment plants, Water 14 (15) (2022) 2404, 
https://doi.org/10.3390/w14152404. 

[26] M. Nikpay, Wastewater fines influence the adsorption behavior of pollutants onto 
microplastics, J. Polym. Environ. 30 (2022) 776–783, https://doi.org/10.1007/ 
s10924-021-02243-x. 

[27] A. Puckowski, W. Cwięk, K. Mioduszewska, P. Stepnowski, A. Białk-Bielińska, 
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